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We report that human T cells persistently infected with primate foamy virus type 1 (PFV-1) display an
increased capacity to bind human immunodeficiency virus type 1 (HIV-1), resulting in increased cell permis-
siveness to HIV-1 infection and enhanced cell-to-cell virus transmission. This phenomenon is independent of
HIV-1 receptor, CD4, and it is not related to PFV-1 Bet protein expression. Increased virus attachment is
specifically inhibited by heparin, indicating that it should be mediated by interactions with heparan sulfate
glycosaminoglycans expressed on the target cells. Given that both viruses infect similar animal species, the
issue of whether coinfection with primate foamy viruses interferes with the natural course of lentivirus
infections in nonhuman primates should be considered.

Virus replication can be modulated by the presence of either
homologous defective viral genomes or viruses of distinct
classes capable of interfering with particular stages of the virus
cycle in dually infected organisms. It is established that coin-
fection with other retroviruses (human T-cell leukemia virus
types 1 and 2) (31), human herpesviruses (human herpesvirus
type 6 [HHV-6], HHV-7, and HHV-8) (4, 7, 9, 12, 32), or
nonpathogenic flavivirus GB virus (30) influences progression
of human immunodeficiency virus type 1 (HIV-1) disease.
Foamy viruses (FVs) are innocuous complex retroviruses that
establish lifelong persistent infection in their hosts without
inducing disease (13, 15, 17, 19). Persistence of primate foamy
virus type 1 (PFV-1), the prototype of FVs, is associated with
accumulation of a defective homologous provirus, PFV�Tas,
generated by alternative splicing of the wild-type genomic
RNA, deleting a 301-bp intron in the viral transactivator tas
gene (18, 26, 33), which negatively interferes with replication
of its parental counterpart by production of the regulatory Bet
protein (18, 26, 33). Interestingly, FV distribution among
mammalian species mirrors that of lentiviruses (15, 17), and
although FVs display broad cell tropism, both infect T cells and
macrophages (29).

Looking for possible interference with lentivirus replication,

we investigated the impact of acute PFV-1 infection on HIV-1
replication by exposing human H9 T cells (22) to X4 HIV-1LAI

plus or minus PFV-1. No significant effect of PFV-1 infection
on HIV-1 replication was noted as monitored by sequential
p24 (CoulterR HIV-1 p24 antigen assay) and HIV-1 DNA
quantification. However, due to massive cell lysis, the experi-
ment could not be prolonged beyond 8 days postinfection (p.i.)
(data not shown). We next examined this point in a system that
harbors the PFV genome without cell lysis. Hence, H9 cells
were initially infected with PFV-1 (0.1 PFU/ml), and cells that
survived acute infection were cultured until disappearance of
the cytopathic effect, which occurred after 4 weeks. At that
time, remaining lysis-resistant H9 cells (referred to as H9PFV-1

cells hereafter) harbored the PFV�Tas genome, representing
a minor fraction of the viral genomes, as reported with other
human hematopoietic cell lines (Fig. 1A) (33). Persistent
PFV-1 infection was confirmed by showing that H9PFV-1 cell
virus production was reduced by �90%, as measured using
BHK21 indicator cells expressing the green fluorescent protein
(GFP) under the control of PFV-1 long terminal repeats
(LTR) (28) (Fig. 1B). Accordingly, radio-immunoprecipi-
tation of PFV-1 proteins from both the nuclear and cyto-
plasmic fractions of H9PFV-1 cells showed that they mainly
produced the Bet protein (11) (Fig. 1C). Because nuclear
PFV-1 Gag doublets were also faintly detected in H9PFV-1

cells, both fractions were analyzed by Western blotting, which
allows more accurate detection of this product (Fig. 1D): in-
deed, H9PFV-1 cells still expressed PFV-1 Gag, indicating that
they retained the capacity to drive protein expression from the
5� LTR.

* Corresponding author. Mailing address: Laboratoire d’Immunol-
ogie Cellulaire et Immunopathologie de l’EPHE, EMI-0013, Institut
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To investigate the impact of persistent infection by PFV-1
on the early steps of the HIV-1 replication cycle, we examined
HIV-1 entry, nuclear import, and integration in H9PFV-1 cells.
The H9PFV-1 cells were synchronized in G1 by double-thymidin
block (2 mM; Sigma-Aldrich) (6) before a 2-h exposure to
X4 HIV-1NL4-3 (1 �g of p24 equivalent/3 � 106 cells; NIH
AIDS Research and Reference Reagents Program). Virus-
exposed cells were kept arrested for 24 h at the G1/S bound-
ary with 5 �g of aphidicolin (Sigma-Aldrich)/ml to preserve
nuclear envelope integrity and maintained in the presence
of the HIV protease inhibitor Saquinavir (1 �g/ml; Roche
Pharmaceuticals) to limit analysis to single-round infection.
HIV-1 DNA copy numbers detected 6 h p.i. averaged 830 �
214 and 5,341 � 2,229 (mean � SEM; n � 4) per 103 pa-
rental and H9PFV-1 cells (sixfold increase), respectively (Fig.
2A). Specificity of this phenomenon was controlled by ex-
posing H9PFV-1 cells to a vesicular stomatitis virus glyco-
protein (VSV-G)-pseudotyped NL4-3 virus. Strikingly, PCR
analysis 6 h p.i. showed that HIV-1 DNA amounts were 50%
lower in H9PFV-1 cells than in parental cells, indicating that the
former had a reduced capacity to support virus entry via en-
docytosis (Fig. 2B). There was no difference between parental

and H9PFV-1 cells concerning HIV-1 reverse transcription (re-
verse transcription efficiency, �80%), nuclear import, and in-
tegration (Fig. 2C and D), indicating that persistent infection
by PFV-1 led to increased permissiveness to HIV-1 without
affecting major postentry events.

To examine whether persistent infection by PFV-1 also en-
hanced HIV-1 cell-to-cell transmission, H9PFV-1 cells were ex-
posed to HIV-1NL4-3 and cocultured for 24 h with P4-CCR5
indicator cells expressing the 	-galactosidase gene under
HIV-1 LTR control (1). Virus transmission was then two- to
sixfold more efficient with H9PFV-1 cells than with parental
cells (Fig. 2E and F). Because these data suggested that per-
sistent PFV-1 infection enhanced membrane attachment of
HIV-1, we next assessed H9PFV-1 cell-associated p24 two h
after exposure to HIV-1NL4-3. Cell-associated p24 averaged
480 � 302 ng/106 H9PFV-1 cells versus 45 � 20 ng/106 H9PFV-1

cells for parental cells (mean � standard error of the mean
[SEM]; n � 4; 10-fold increase). Spinoculation, which in-
creased the level of cell-associated p24 by 10- to 50-fold rela-
tive to simple incubation, did not change the overall pattern,
ruling out the effect of centrifugation on virus attachment to
H9PFV-1 cells (Fig. 3A and B). H9PFV-1 cell capacity to bind X4

FIG. 1. Characterization of H9 cells persistently infected with PFV-1 (H9PFV-1). (A) Southern blot analysis: DNA from H9PFV-1 cells, acutely
infected H9 parental cells, and pPFV-1 or the defective form of the provirus (pPFV-1�Tas), was digested by EcoRI and NcoI, separated in a 0.8%
agarose gel, and blotted onto nitrocellulose before hybridization with a radiolabeled EcoRI-NcoI pSVTas 663-bp probe (14). (B) Assessment
of PFV-1 production by H9PFV-1 cells: BHK21 cells, which express GFP under the control of PFV-1 LTR, were cultured for 48 h with culture
supernatants from H9PFV-1, acutely infected or uninfected (NI) control H9 cells, before FACS analysis for GFP expression. (C) Radio-
immunoprecipitation of PFV-1 proteins: proteins from both nuclear (N) and cytoplasmic (C) fractions of H9PFV-1 or acutely infected H9
parental cells were immunoprecipitated with a PFV-1-specific rabbit antiserum, as reported previously (11). (D) Western blot analysis of H9PFV-1

and parental cells: nuclear and cytoplasmic protein extracts were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and
transferred onto a polyvinylidene difluoride membrane (Immobilin-P; Millipore) before detection of PFV-1 proteins by the PFV-1 rabbit
antiserum.
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HIV-1NLHX (gift of M. Bukrinsky, Picower Institute of Medical
Research, Manhasset, N.Y.), R5 HIV-1NLAD8 (gift of P. Char-
neau, Institut Pasteur, Paris, France), SIVmac251 (gift of R.
Legrand, CEA, Fontenay aux Roses, France), or the VSV-G
pseudotype was then tested (Fig. 3C). H9PFV-1 cells displayed
5- to 14-fold-increased capacity to bind the HIV-1 or simian
immunodeficiency virus (SIV) strains tested. No difference was

noted regarding VSV-G pseudotype binding, which empha-
sizes the specificity of the phenomenon.

Whether Bet was responsible for increased attachment of
HIV-1 to H9PFV-1 cells was then examined, because Bet plays
an important role in the establishment and/or maintenance of
PFV-1 persistence (16, 25). For that purpose, a murine leuke-
mia virus (MLV)-based retrovirus vector (MSCV retroviral

FIG. 2. Persistent PFV-1 infection of H9 cells increases permissiveness to HIV-1 and promotes cell-to-cell virus transmission. H9PFV-1 and
parental cells were exposed at 25°C via spinoculation (1,200 � g) to (A, C, and D) HIV-1NL4-3 or (B) a VSV-G-pseudotyped HIV-1NL4-3 virus (1
�g of p24 equivalent/3 � 106 cells). (A and B) Virus entry was assessed 6 h p.i. by real-time LTR U3-U5 PCR performed with 5�-CTAACTA
GGGAACCCACG (nt 498 to 516) sense and 5�-CTGCTAGAGATTTTCCACAC (AA55; nucleotides 616 to 635) antisense primers; results were
normalized relative to 103 cells and are shown as means plus SEM (n � 4). (C) HIV-1 nuclear import was assessed 24 h p.i. by real-time 2-LTR
circle PCR using 5�-GGAACCCACTGCTTAAGCC (nucleotides 506 to 524) sense and 5�-TGTGTAGTTCTGCCAATCAGG (nucleotides 75 to
95) antisense primers with subsequent detection of the corresponding amplicons by hybridization probes. Standard curves (range, 2 to 2 � 107

copies) were generated with the 2-LTRA plasmid, which contains the 2-LTR U3-U5 junction. Results are normalized relative to 104 copies of
full-length HIV-1 DNA detected by LTR U3-gag PCR. (D) HIV-1 integration was assessed 24 h p.i. by real-time Alu-LTR nested PCR, essentially
as described previously (5). Primers sense L-M667 (5�-ATGCCACGTAAGCGAAACTCTGGCTAACTAGGGAACCCACTG), antisense Alu-1
(5�-TCCCAGCTACTGGGGAGGCTGAGG), and sense Alu-2 (5�-GCCTCCCAAAGTGCTGGGATTACAG) were used for the first 12 ampli-
fication cycles. Primers sense Lambda-T (5�-ATGCCACGTAAGCGAAACT) and antisense AASSM (5�-GCTAGAGATTTTCCACACTGAC
TAA, nucleotides 609 to 633) were used for the second-round PCR. Detection of the corresponding amplicons was achieved with hybrid-
ization probes, and standard curves for integrated viral DNA were generated by using HeLa cells infected with a �env HIV-1 R7 Neo virus.
Integrated proviral DNA copy numbers were normalized relative to 104 copies of full-length HIV-1 DNA. (E and F) Cell-to-cell transmission
of HIV-1 by H9PFV-1 cells: H9PFV-1 and parental cells were spinoculated at 4°C for 2 h in the presence of HIV-1NL4-3 (0.01 to 1 �g of p24
equivalent/3 � 106 cells) before they were added for 24 h to P4-CCR5 indicator cells that express the 	-galactosidase reporter gene under the
control of HIV-1 LTR (23). P4-CCR5 cells were fixed and processed for 5-bromo-4-chloro-3-indolyl-	-D-galactopyranoside staining 48 h later
(E). Results are expressed as mean numbers (plus SEM) of blue cells per field (F); 30 fields were counted for each condition; they are
representative of one experiment out of two.
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expression system; Clontech) was used to stably transduce Bet
into H9 cells (Fig. 4A). After exposure to HIV-1NL4-3 of two
clones selected for high levels of Bet expression, no difference
was noted regarding virus binding, entry, or replication (Fig.
4B and data not shown).

We finally examined the receptors involved in attachment of
HIV-1 to H9PFV-1 cells. Fluorescence-activated cell sorting
(FACS) analysis did not disclose any difference with parental
cells regarding CD4, CXCR4, CCR5, or type C lectin DC-
SIGN/CD209 expression (10) (data not shown). In addition,
preincubating virus with soluble CD4 (NIH AIDS Research
and Reference Reagents Program) did not affect binding of
HIV-1NL4-3 to H9PFV-1 cells (Fig. 4C). Because surface polya-
nions and glycans also contribute to HIV-1 attachment to tar-
get cells (20, 21, 27), the effect of heparin, mannan, and dex-
tran 10000 (all from Sigma-Aldrich) on binding of HIV-1NL4-3

to cells was assessed: 1-h preincubation of H9PFV-1 cells with
heparin inhibited HIV-1-enhanced cell association in a dose-
dependent manner, while neither mannan nor dextran had

such an effect (Fig. 4D and E and data not shown). Thus,
change of surface expression of heparan-sulfate proteoglycans
could be responsible for increased capacity of H9PFV-1 cells to
bind HIV-1 (2).

These results demonstrate that H9 cells persistently infected
with PFV-1 display an increased capacity to capture HIV-1 via
interactions with heparan-sulfate proteoglycans, whose ability
to attach HIV-1 gp120 is well documented (24). The phenom-
enon is independent of PFV-1 Bet, suggesting that other viral
proteins modulate expression of membrane proteoglycans.
This hypothesis is supported by the lack of PFV-1 LTR com-
plete silencing in H9PFV-1 cells. Although our findings cannot
be extrapolated to in vivo-coinfected nonhuman primates, they
nonetheless provide the first evidence of interactions between
FVs and lentiviruses. Because PFVs replicate in mucosae of
infected individuals (3, 8) and can be isolated from blood
T cells (29), one should consider the hypothesis that PVF-
infected cells may be involved in the natural history of SIV
infection.

FIG. 3. Increased capacity of H9PFV-1 cells to capture HIV-1 virions. (A, B) Determination of p24 associated with H9PFV-1 or with parental cells
exposed to HIV-1NL4-3: cells were (A) spinoculated or (B) simply incubated for 2 h at 4°C in the presence of the virus (1 �g of p24 equivalent/
3 � 106 cells) and washed three times to remove unbound virus, and p24 in cell lysates was measured by enzyme-linked immunosorbent assay; data
are from a representative experiment. (C) Binding to H9PFV-1 cells of different HIV-1 strains, SIVmac and VSV-G-pseudotyped HIV-1NL4-3:
H9PFV-1 and parental cells were exposed to viruses, as above, before being processed for p24 (HIV) or p27 (SIV; Coulter SIV core antigen assay)
dosage; results are expressed as fold increases of H9PFV-1 cell over parental cell-associated p24 and are representative of one experiment out
of two.
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